澳门金沙娱乐城-澳门金沙娱乐场_澳门百家乐官网_全讯网新2开户 (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

南皮县| 大发888 dafa888 gzsums| 御匾会百家乐官网的玩法技巧和规则| 蓝盾百家乐网址| 南召县| 百家乐算点子打法攻略| 百家乐官网也能赢钱么| 做生意大门方位风水| 456棋牌游戏| 百家乐官网怎样玩才会赢钱| 手机棋牌游戏平台| 澳门百家乐一把决战输赢| 网上百家乐官网可靠| 百家乐论坛官网| 利记百家乐官网现金网| 上海博彩生物科技有限公司| 百家乐巴厘岛平台| 博狗百家乐官网开户| 金字塔百家乐的玩法技巧和规则| 足球百家乐官网投注| 大发888娱乐场骗局| 真人百家乐网西陆| 赙彩百家乐官网游戏规则| 威尼斯人娱乐城客户端| 58百家乐官网的玩法技巧和规则| 365新网址| 百家乐园游戏77sonci...| 百家乐官网视频游戏聊天| 大发888 充值| 百家乐筹码免运费| 免费百家乐官网分析工具| 澳门百家乐官网线上娱乐城| 大发888客服咨询电话| 百家乐信息| 阴宅24山吉凶| 百家乐官网单机破解版| 大发888 无法进入网页| 9人百家乐桌布| 百家乐官网赢钱面面观| 大发888188| 蓝盾百家乐代理|